On a Linear Stochastic Wave Equation Modeling Heat Flow
نویسندگان
چکیده
We consider a stochastic Klein-Gordon wave equation modeling heat flow in a linear field that is coupled to thermal reservoirs at different temperatures. We discuss, in a perturbative context, the approach to a stationary, non-equilibrium state, and show that the state is supported on field configurations which are Hölder continuous, with any exponent less than 1/2. We determine the heat flux to lowest order in perturbation theory.
منابع مشابه
Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملModeling Thermal Effects on Nonlinear Wave Motion in Biopolymers by a Stochastic Discrete Nonlinear Schrödinger Equation with Phase Damping
A mathematical model is introduced for weakly nonlinear wave phenomena in molecular systems like DNA and protein molecules that includes thermal effects: exchange of heat energy with the surrounding aqueous medium. The resulting equation is a stochastic discrete nonlinear Schrödinger equation with focusing cubic nonlinearity and “Thermal” terms modeling heat input and loss: PDSDNLS. New numeric...
متن کامل